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A B S T R A C T   

Oil palm wood is one of the solid wastes available in large quantities, which has been used as non-structural 
material. Many researchers focus on their material strength and binder selection. However, limited studies 
investigate oil palm wood as insulation materials. Therefore, this study aimed to evaluate the thermal and sound 
characteristics of oil palm wood binderless panels as insulation materials. Panels were manufactured from oil 
palm wood using hot presses with different particle sizes and pressing times. The results indicated that the 
particle size had a significant effect on the characteristics of the binderless panels but not on pressing times. The 
coarser particle size enhanced the thermal and sound resistance but decreased density, water resistance, and 
flexural strength. In addition, the panels with large particles had the least thermal conductivity (0.050 W/mK) 
and the highest sound absorption coefficient of 0.33. The study also showed that the flexural strength and water 
absorption of the panels ranged from 4.21 to 8.18 MPa and 84.51%–119.06%, respectively. The findings of this 
study indicate the feasibility of binderless panels from oil palm wood as insulation materials.   

1. Introduction 

Since the early twentieth century, insulation materials have been 
widely employed in buildings. These materials are generally synthetic, 
such as extruded polystyrene, polyurethane foam, polyisocyanurate, and 
expanded polystyrene. Some thermal and acoustic insulators in com
mercial construction have been previously reviewed [1–4]. Synthetic 
materials have high performance in resistance to thermal and sound but 
impact the environment and health [1,5]. Therefore, the use of natural 
materials is essential in creating a sustainable and healthy environment. 

In recent years, many studies have investigated natural-based insu
lation materials as a replacement for synthetic materials. The natural 
fibers from natural resources are becoming increasingly popular because 
they are abundant, low density, highly porous, environmentally 
friendly, renewable, low cost, and suitable isolators [6–8]. Some re
searchers studied the utilization of natural fibers as a raw material for 
thermal insulation, such as wood fiber [9,10], bamboo fiber [11], sun
flower and vermiculite fiber [12], and banana fiber [13]. Furthermore, 
some previous studies have reported the performance of natural fibers as 
acoustic absorbers. Hemp fiber [14], sunflower [15], sisal, coconut 

husk, sugar cane, banana [16], coir [17], date palm empty fruit [18], 
bamboo [19], and jute [20] from natural sources have also been 
investigated. In addition, the thermal properties and acoustic perfor
mance of different particle sizes of the Washingtonia palm tree were also 
examined [21,22]. Overall, their reports have concluded that natural 
materials have good thermal resistance and sound absorption perfor
mance, an alternative to synthetic fibers. 

The present study proposes oil palm wood particles as raw materials 
for thermal and sound insulation panels. Currently, Indonesia is the 
largest producer of palm oil globally, 48.42 million tons, with an oil 
palm plantation area of 14.59 million hectares [23]. Each tree generates 
about 10% of palm oil, and 90% of the remaining is biomass waste [24]. 
The trunks and fronds were the primary biomass wastes produced by 
plantations, around 70% and 20.5%, respectively [25]. In 2020, 
Indonesia was expected to produce approximately 44 million tons of 
felled trunks [26]. These appreciable amounts of felled are potential as a 
wood-based product. Some previous researchers have explored oil palm 
trunks as a raw material for wood-based products, such as lumber, 
plywood, particleboard [27–29], compreg wood [30], and biomass [31, 
32]. Furthermore, efforts to develop oil palm wood (OPW) for acoustic 
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insulation materials in buildings have been made [33]. 
In this study, the binderless panels were made of oil palm wood 

particles to evaluate the thermal and acoustic insulation properties. Oil 
palm wood was prepared to particles, boiled, dried, and formed using 
hot pressing. Various analyses were undertaken, including water ab
sorption, thickness swelling properties, flexural properties, thermal 
conductivity, and sound absorption performance. 

2. Material and methods 

2.1. Materials 

Oil palm wood with an approximate age of 25–30 years was exam
ined from one of the oil palm plantations in Aceh, Indonesia. In this 
study, only the inner part of felled oil palm logs was used as the raw 
materials. Oil palm wood was chopped to the tiny chip manually and 
then reduced to three particles size using a disc mill: large (0.84–0.42 
mm), medium (0.42–0.07 mm), and small (<0.07 mm). Particles were 
boiled in hot water at a temperature of 100 OC for 30 min. Pre-treatment 
oil palm wood particles in hot water for 30 min increased the mechan
ical properties and thermal stability of the final particleboard [34,35]. 
Later, particles were dried in an oven at a temperature of 80 OC for 24 h 
to a moisture content of 10–12%. Table 1 presents the chemical value of 
the oil palm wood. 

2.2. Panel fabrication 

In this work, the panels were manufactured using a two-stage 
pressing process. First, they were pre-pressed for 10 and 20 min at a 
pressure of 15 MPa at 200 OC and continued the cooling process for 5 
min at 100 OC under the 10 MPa pressure. The panels were manufac
tured from different particle sizes with a target density of 0.70 g/cm3. 
Three samples of each type with dimensions of 150 mm × 150 mm x 10 
mm and Ø 100 mm × 10 mm were prepared for thermal conductivity 
and sound absorption testing, respectively. Table 2 summarizes the 
manufacturing design of the binderless panels, and Fig. 1 shows the 
physic of binderless panels. Before undergoing tests, the panels were 
conditioned for seven days at 25 OC and approximately 60% relative 
humidity. 

2.3. Physical properties 

Three samples were cut from each panel with the dimension of 50 
mm × 50 mm X 10 mm to evaluate their physical properties. Before 
testing, all samples had been pre-conditioned to reach the constant 
weight. For the thickness swelling (TS) and water absorption (WA) 
testing, the sample thickness and weight were measured before and after 
being soaked in water for 24 h. SNI 03-2105-2006 standard [37] was 
used to determine the physical properties. 

2.4. Flexural test 

The flexural strength test using a three-point flexural test was per
formed on an MTS EXCEED Model E43 universal testing machine with a 
crosshead speed of 2 mm/min. The five samples with the dimension of 
150 mm × 30 mm x 10 mm from each panel were placed between two 
supports at a distance of 100 mm, based on the standard ASTM D790 
[38]. 

2.5. Thermal conductivity 

An insulated box model PHYWE SYSTEME GMBH 37070 Göttingen, 
Germany, was used for thermal conductivity testing. Three samples of 
each type were prepared for heat resistance testing was (150 × 150 x 10) 
mm, following ASTM C177-9 [39] at a steady-state condition. Temper
ature measurements using four thermocouples were installed inside and 

Table 1 
Chemical, starch, and sugar content of the oil palm wood 
[36].  

Composition Content 

Alpha cellulose 50.21% 
Holocellulose 72.60% 
Lignin 20.15% 
Starch 12.19 (mg/ml) 
Glucose 5.97 (mg/ml) 
Xylose 6.61 (mg/ml) 
Arabinose 1.09 (mg/ml)  

Table 2 
Panel manufactured design.  

Panel type Particle size (mm) Temp (0C) Pressing Parameter 

Stage 1 Stage 2 

L1 0.84–0.42 200 p = 15 MPa 
t = 10 min 

p = 10 MPa 
t = 5 min L2 0.42–0.07 

L3 <0.07 
L4 0.84–0.42 p = 15 MPa 

t = 20 min 
p = 10 MPa 
t = 5 min L5 0.42–0.07 

L6 <0.07  

Fig. 1. The physic of bindreless panels (a) L1, (b) L2, (c) L3, (d) L4, (e) L5, 
(f) L6. 

Table 3 
The average physical properties of binderless panels and different literature.  

Particle size 
(mm) 

Density (g/ 
cm3) 

WA (%) TS (%) Ref. 

0.84–0.42 0.58 ± 0.05 119.06 ±
8.18 

73.33 ±
4.50 

Present 
study 

0.42–0.07 0.65 ± 0.06 93.90 ± 6.80 56.00 ±
3.30 

<0.07 0.70 ± 0.07 84.51 ± 2.49 43.24 ±
2.49 

0.84–0.42 0.62 ± 0.07 117.97 ±
6.60 

72.50 ±
2.87 

0.42–0.07 0.65 ± 0.04 92.75 ± 5.25 54.41 ±
3.09 

<0.07 0.68 ± 0.03 85.88 ± 2.62 41.33 ±
2.05 

0.3–5 1 42.92 17.96 [43] 
0.5–1 0.8 211.03 111.1 [44] 
fine 0.65 100.40 59.34 [45] 
0.25–2 0.8 65.6 49.70 [27]  
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outside the box and on the interior and exterior of the sample walls. 

2.6. Acoustical characteristic 

The sound absorption coefficient of the panels determined the 
acoustical characteristic. The sound absorption coefficient was set based 
on ISO 10534–1:1996 [40], using an impedance tube [41] with a 
two-channel and a frequency ranging from 250 to 2000 Hz. Three (Ø 
100 × 10) mm samples of each type were prepared for sound absorption 
testing. 

3. Results and discussion 

3.1. Physical properties of the binderless panel 

Table 3 shows the average density, water absorption (WA), and 
thickness swelling (TS) of oil palm wood binderless panels from this 
works and other literature. The density of binderless panels ranges from 
0.58 to 0.70 g/cm3, with the lowest density in panels made of larger 
OPW particles. The decrease in density due to particle size was also 
reported in previous studies [22,42]. Their studies evaluated the effect 
of the wood particle size on composites, and large particles showed a 
lower density of composites than small ones. The panel made of 
larger-sized wood particles may have more and larger pores, whereas 
smaller particles resulted the mat with better structure compactness. 

WA and TS are the keys parameters for the dimensional stability of 
wood-based products. The binderless panel exhibited a high water ab
sorption (from 84.51% to 119.06%). As reported in the literature, the 
poor water resistance would be due to the hygroscopic characteristic of 
oil palm wood. It has more hydroxyl groups in the parenchyma tissue 
that facilitates more hydrogen bonds. In addition, the parenchyma 
behaved like a sponge, making it easier for the oil palm wood to absorb 
water [28]. In addition, the poor water resistance of oil palm wood could 
be attributed to the chemical components of the substance, which are 
rich in sugars, starch, and saccharides in the parenchyma tissue [27]. 
The performance of water uptake decreases based on the particle ge
ometry, following small < medium < large. The water uptake capacity 
of the panels depends on the particle size; the large particle has a higher 
percentage of water uptake. This work exhibited an extra to 40% 
reduction when small particles used. Other authors have reported that 
boards’ water resistance increased when using finer particles [44]. 
Similarly, the water resistance of particleboards from oil palm trunks 
(OPT) increased with finer particles [44]. Other researchers have also 
observed a decrease in the WA of panels with smaller particles [22,46]. 

The absorbed water influences the thickness swelling (TS); the 

higher the water content, the higher the panel dimension changes. This 
study obtained the highest thickness swelling for sample L1 (73.33%) 
and the lowest (41.33%) for L6. Previous studies [47,48], has reported 
similar findings, where the swelling thickness decreases with the 
increasing water resistance. The findings of this work prove that particle 
size can influence physical properties. Nevertheless, it was no significant 
effect pressing times on the physical properties. 

3.2. Flexural strength properties 

Fig. 2 depicts the flexural properties of the panels as a function of 
particle size and pressing time. The highest flexural strength and 
modulus values were 8.8 MPa and 1620 MPa, respectively, for the 
binderless panel made of small particles (L6 sample). Using small par
ticles better improves flexural properties compared to other panel par
ticle sizes in all conditions. Fine particles can produce better 
compatibility to increase the bonding between individual particles [21, 
44]. The fine and ratio particle size fractions had a significant impact on 
the internal bonding strength of the panels [49]. Similar findings from 
the previous study [21,44] reported that large particles reduced the 
flexural properties of board manufactured oil palm trunks and Wash
ingtonia palm trees. The particle size significantly impacts the flexural 
properties due to its effect on the interlocking mechanism between the 
particles [50,51]. These findings are better than bio-composites made of 
rice husk, wheat husk, wood fibers, and textile waste fibers with PLA as a 
binder; their flexural strength is 0.80–2.25 MPa [52]. Furthermore, 
similar results were obtained in another research study [27], reaching 
8.9 MPa when adding 10% ammonium dihydrogen phosphate to the 
binderless board from oil palm trunks. 

The binderless board could be produced by hot-press without adding 
any adhesives due to chemical components, such as sugar and starch, 
which act as the particles’ self-bonding. However, a longer press time 
was insufficient to create strong bonding between the particles in the 
panels [53], so it did not significantly influence the bending strength 
[54]. The flexural properties of the binderless panels with a pressing 
time of 15 min differed by about 7% compared to 25 min. 

3.3. Thermal conductivity properties of the panel 

Using the thermal insulation materials of buildings is the most 
effective way to reduce energy consumption in buildings [55]. Thermal 
conductivity is the primary quality indicator of the thermal insulation 

Fig. 2. Flexural properties of binderless panels.  

Fig. 3. Correlation of thermal conductivity with different particle sizes 
and densities. 
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material, with a lower value indicates good resistance. The average 
thermal conductivity coefficient is between 0.050 and 0.132 W/mK for 
15 min pressing and 0.062–0.143 W/mK for 25 min pressing. The 
samples L1 and L6 showed the lowest and highest thermal conductivity 
produced from the largest and smallest particles. 

Fig. 3 shows the relationship between the thermal conductivity of 
panels and particle size and density. The panels decreasing order of 
thermal conductivity and density are as follows: (L1, L6) < (L2, L5) <
(L3, L4). Overall, the particle size and density affected the thermal 
conductivity coefficients of panels. However, it seems there is no 

significant effect for pressing time. An increase in particle size decreases 
the thermal conductivity of the panel and the larger particle size leads to 
decreased density or compactness. As the panel density decreases, the 
voids increase, and the solid substances reduce; so, the panels contain 
more air in their structures, leading to the enhanced heat resistance of 
the panels [11]. A similar finding has been published by some previous 
researchers [9,12,56,57], measuring thermal conductivity on boards 
made of natural fiber. Their study showed a positive relationship be
tween thermal conductivity and density. 

Table 4 summarizes the thermal conductivity and density of the 
produced panels and other insulation materials made of natural fiber. 
The thermal conductivity in the present work is comparable to the wood 
waste particleboard binderless [9] and the boards of Washingtonia palm 
tree with additive UF [21]. The result of this work showed that the 
panels produced have better thermal performance than particleboards 
made of a synthetic polymer as an adhesive, such as banana/polypro
pylene [13], wood fiber/PLA [52], and sunflower/gypsum [12]. Ac
cording to the Wood Handbook [58], the thermal conductivity ranging 
from 0.1 to 0.14 W/mK is suitable for a thermal insulator for buildings. 
Overall, all binderless panels in this work fall into that range. Therefore, 
the panels are potentially used as thermal insulation material for 
buildings. 

3.4. Sound absorption performance of the panel 

Fig. 4 depicts the sound absorption coefficient of the panels with 
different particle sizes and pressing times in the low-frequency region, 
125–2000 Hz. Panels with large particles (L1 and L4) at a frequency of 
2000 Hz showed a high sound absorption coefficient of 0.33 and 0.30, 
respectively. The study exhibited that the sample manufactured with a 
lower density absorbed more sound than the small particles [18]. In this 
case, the pressing time of the binderless panel did not have a significant 
effect on sound absorption. 

The finding is in line with previous studies [60,61], examining the 
effect of particle size on the sound absorption of panels made of natural 
fiber. They showed that low-density panels have more porosity and are 
therefore suitable for sound insulating materials. As the porosity of the 
material increases, tortuosity also increases, and the distance sound 
waves travel improves. Hence, increasing the amount of sound energy 
lost in the material results in high sound absorption [62]. Overall, the 
sound absorption property of the panels produced is poor; however, they 
better than oil palm trunk panels [33] and empty fruit bunch with a 
density of 0.701 g/cm3 [63]. Furthermore, the comparison of the sound 
absorption performance of binderless panels with some different boards 
made of OPW is given in Table 5. 

4. Conclusions 

This study investigated the thermal and sound resistance perfor
mance of binderless panels manufactured from oil palm wood. 

Table 4 
The thermal conductivity and different insulation materials.  

Panel type Density (g/ 
cm3) 

Thermal Conductivity 
(W/mK) 

Ref. 

L1 0.58 ± 0.05 0.050 ± 0.009 Present 
study L2 0.65 ± 0.06 0.075 ± 0.015 

L3 0.70 ± 0.07 0.132 ± 0.029 
L4 0.62 ± 0.07 0.062 ± 0.013 
L5 0.65 ± 0.04 0.074 ± 0.017 
L6 0.68 ± 0.03 0.143 ± 0.016 
Wood waste 

binderless 
0.17 0.055 [9] 

Bamboo binderless 0.63 0.10 [11] 
Banana/ 

Polypropylene 
0.98 0.157 [13] 

Washingtonia tree/ 
UF 

0.75 0.062 [21] 

Wood fiber/PLA 0.45 0.110 [52] 
Sunflower/Gypsum 0.22–0.30 0.134–0.219 [12] 
Hybrid bio-panel 0.66–0.79 0.067–0.148 [59]  

Fig. 4. Sound absorption of binderless panels.  

Table 5 
Sound absorption of panels and different boards made from OPT.  

Panel type Density (g/cm3) Frequency (Hz) Ref. 

125 250 500 1000 1500 2000 

L1 0.58 ± 0.05 0.15 0.17 0.18 0.20 0.24 0.33 Present study 
L2 0.65 ± 0.06 0.15 0.14 0.16 0.19 0.19 0.22 
L3 0.70 ± 0.07 0.08 0.12 0.13 0.19 0.20 0.23 
L4 0.62 ± 0.07 0.12 0.18 0.20 0.19 0.24 0.30 
L5 0.65 ± 0.04 0.12 0.17 0.20 0.19 0.20 0.19 
L6 0.68 ± 0.03 0.10 0.13 0.15 0.16 0.18 0.22 
OPT cross-cut 0.34 – ~0.11 ~0.10 ~0.15 ~0.18 ~0.16 [33] 
OPT + UP 0.10 – ~0.30 ~0.60 ~0.52 ~0.42 ~0.50 [64] 
OPT+25% UP5 – – ~0.05 ~0.10 ~0.18 ~0.15 ~0.22 [65] 
OPEFB 0.58 – – ~0.22 ~0.34 ~0.38 ~0.46 [63] 
Oil palm frond 0.30 – ~0.39 ~0.60 ~0.39 – ~0.38 [66]  
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Generally, the results showed that particle size had a significant influ
ence on the characteristics of the binderless panel, but not the pressing 
duration of 15 and 25 min. These implied that 15 min pressing time is 
sufficient from the view of the practical and economic practice. The use 
of large particles increased the thermal and sound resistance, decreased 
flexural properties, and absorbed a higher volume of water. The L1 
sample showed the best values for thermal conductivity (0.050 W/mK) 
and sound absorption (0.33) at 2000 Hz, while the L6 sample had the 
highest flexural strength and thickness swelling at 8.18 MPa, and 
41.33%, respectively, and the L3 sample had the highest water resis
tance (84.51%). Based on the results, the binderless panel from oil palm 
wood is feasible as an insulating product for building. In addition, 
effective utilization of the oil palm wood would be beneficial from 
environmental and socio-economic aspects. 
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